Math 241 Winter 2024 Lecture 15

Feb 19-8:47 AM

$$
f(x)=\sqrt{x}
$$

It is increasing only.
It passes the horizontal line Test.
It is one-to-one function.

Consider the graph below:

If we Switch all ordered-Pairs

Graph the inverse of the display below.

Range \rightarrow Domain y χ

Inverse notation
Not exponent Function $f(x)$ reciprocal
Inverse $f^{-1}(x)$ " f-inverse of x "

$$
\begin{aligned}
& f(x)=\sin x \\
& f^{-1}(x)=\sin ^{-1} x \quad \text { "Sine-inverse of } x " \\
& f(x)=\cos x \\
& f^{-1}(x)=\cos ^{-1} x \quad \text { "Cosine-inverse of } x \text { " }
\end{aligned}
$$

Left's graph

Left's switch all ordered - pairs.

Jan 29-8:25 AM

Graph $y=\sin ^{-1}(x-1)$

$$
-1 \leq x^{\sqrt{6}}-1 \leq 1
$$

add 1

$$
0 \leq x \leq 2
$$

Graph $y=\operatorname{Sin}^{-1}\left(\frac{1}{2} x\right)+\frac{\pi}{2}$

$$
\begin{aligned}
& -1 \leq \frac{1}{2} x \leq 1 \\
& -2 \leq x \leq 2
\end{aligned}
$$

Graph $\quad y=-2 \sin ^{-1}\left(\frac{1}{3} x\right)$

$$
\begin{aligned}
& -1 \leq \frac{1}{3} x \leq 1 \\
& -3 \leq x \leq 3
\end{aligned}
$$

Graph

$$
y=\operatorname{Cos} x
$$

Graph $y=\operatorname{Cos}^{-1}(x+1)$

$$
\begin{aligned}
& -1 \leq x+1 \leq 1 \\
& -2 \leq x \leq 0
\end{aligned}
$$

working with expressions with inverse -functions:
Simplify $\operatorname{Sin}\left(\operatorname{Cos}^{-1} \frac{3}{5}\right)=\operatorname{Sin} \alpha=\frac{4}{5}$
Let $\alpha=\operatorname{Cos}^{-1} \frac{3}{5}$

$$
\begin{equation*}
\Rightarrow \operatorname{Cos} \alpha=\frac{3}{5} \tag{4}
\end{equation*}
$$

use your call in rad. mode.

$$
\sin \text { of } \cos ^{-1} .6=.8
$$

Simplify $\tan \left(\sin ^{-1} \frac{5}{13}\right)=\tan \alpha=\frac{5}{12}$
Let $\alpha=\sin ^{-1} \frac{5}{13}$

$$
\Rightarrow \sin \alpha=\frac{5}{13} \frac{13}{12} \sqrt{5}^{5}
$$

Simplify $\operatorname{Sin}\left(2 \cos ^{-1} \frac{4}{5}\right)=\operatorname{Sin}(2 \alpha)$
Let $\alpha=\operatorname{Cos}^{-1} \frac{4}{5} \quad=2 \operatorname{Sin} \alpha \operatorname{Cos} \alpha$

$$
\begin{aligned}
\Rightarrow \cos \alpha=\frac{4}{5} \frac{5 \alpha]^{3}}{4} & =2 \cdot \frac{3}{5} \cdot \frac{4}{5} \\
& =\frac{24}{25}
\end{aligned}
$$

Simplify $\tan \left(\sin ^{-1} \frac{5}{13}-\cos ^{-1} \frac{4}{5}\right)=\tan (\alpha-\beta)$

$$
\begin{aligned}
\alpha=\operatorname{Sin}^{-1} \frac{5}{13} \rightarrow \operatorname{Sin} \alpha=\frac{5}{13} \frac{13 / \lambda^{\prime} / 5}{12} & =\frac{\tan \alpha-\tan \beta}{1+\tan \alpha \tan \beta} \\
\beta=\operatorname{Cos}^{-1} \frac{4}{5} \rightarrow \operatorname{Cos} \beta=\frac{4}{5} \frac{5 / \sigma^{3}}{4} & =\frac{\frac{5}{12}-\frac{3}{4}}{1+\frac{5}{12} \cdot \frac{3}{4}} \\
& =\square
\end{aligned}
$$

Find exact value of

$$
\text { Let } \alpha=\cos ^{-1} \frac{3}{4}\left(2 \cos ^{-1} \frac{3}{4}\right) \longrightarrow \text { Sale. Says } .125
$$

$$
\begin{array}{rr}
\alpha=\cos \alpha \frac{5}{4} & \frac{4}{4} \sqrt{2} \\
\cos \alpha \sqrt{2} \alpha-\sin ^{2} \alpha= \\
& \left(\frac{3}{4}\right)^{2}-\left(\frac{\sqrt{7}}{4}\right)^{2}= \\
\frac{9}{16}-\frac{7}{16}=\frac{2}{16} \\
& =\frac{1}{8}=.125
\end{array}
$$

find exact value of

$$
\begin{array}{ll}
\operatorname{Sin}\left(\frac{1}{2} \sin ^{-1} \frac{2}{5}\right) & \text { Care Say } \\
\text { Let } \alpha=\sin ^{-1} \alpha & \operatorname{Sin}\left(\frac{1}{2} \alpha\right)
\end{array}
$$

$$
\sin \alpha=\left.\frac{2}{5} \quad \frac{5}{5}\right|_{2}= \pm \sqrt{\frac{1-\cos \alpha}{2}}
$$

$$
\begin{aligned}
& \text { Look at the graph } \sqrt{\sqrt{21}} \\
& \text { of } \sin ^{-1} x
\end{aligned}
$$

Jan 29-9:19 AM

Vectors: Directed Line Segment

Draw the vector \vec{u} with initial Point $(-2,3)$ and terminal point $(5,6)$.

Draw \vec{V} with initial point $(-4,6)$ and terminal point $(6,2)$.

Vectors in standard position

$$
\vec{v}=\langle a, b\rangle \quad \square \text { initial Point }(0,0)
$$

$$
\text { Terminal point }(a, b)
$$

Draw $\vec{V}=\langle 5,12\rangle$ in standard position. magnitude of vector

$$
\left(\begin{array}{l}
v=\langle a, b\rangle \\
|v|=\sqrt{a^{2}+b^{2}}
\end{array}\right.
$$

Given $\vec{V}=\langle-4,3\rangle$

1) Draw \vec{V} in standard position
2) find $|V|=\sqrt{(-4)^{2}+3^{2}}=\sqrt{25}=5$

Direction angle: It is a positive angle between the vector and x-axis.
$\theta \rightarrow$ Direction angle for vector $V=\langle a, b\rangle$

$$
\theta=\tan ^{-1} \frac{b}{a}
$$

find the direction angle for $v=\langle 12,5\rangle$.

$$
\begin{aligned}
\theta & =\tan ^{-1} \frac{b}{a} \\
& =\tan ^{-1} \frac{5}{12} \\
& \approx 23^{\circ}
\end{aligned}
$$

Given vector $V=\langle-2,-5\rangle$

1) Draw in standard position.
2) Find $|V|=\sqrt{(-2)^{2}+(-5)^{2}}=\sqrt{29}$

3) Find its direction angle. $\theta=\tan ^{-1}\left(\frac{-5}{-2}\right)$

$$
\begin{aligned}
& =68^{\circ}+180^{\circ} \\
& \approx 248^{\circ}
\end{aligned}
$$

$$
V=\langle 2 \sqrt{3},-2\rangle
$$

1) Draw in standard position

2) find $|v|=\sqrt{(2 \sqrt{3})^{2}+(-2)^{2}}=\sqrt{4 \cdot 3+4}=\sqrt{16}=4$
3) find its direction angle.

$$
\begin{aligned}
\theta & \approx \tan ^{-1}\left(\frac{-2}{2 \sqrt{3}}\right) \\
& \approx-30^{\circ}+360^{\circ} \\
& \approx 330^{\circ}
\end{aligned}
$$

Expressing vectors using Horizontal and

Vertical Components:

$$
\cos \theta=\frac{a}{|v|}
$$

$a=|v| \cos \theta$
$\sin \theta=\frac{b}{|v|}$
$b=|v| \sin \theta$

$$
\begin{aligned}
& V=\langle a, b\rangle=\langle | v|\cos \theta,|v| \sin \theta\rangle \\
& v=\left\langle 3 \cos 120^{\circ}, 3 \sin 120^{\circ}\right\rangle
\end{aligned}
$$

Jan 29-10:15 AM

$$
V=\left\langle 5 \cos 210^{\circ}, 5 \sin 210^{\circ}\right\rangle
$$

1) Draw v in standard position

2) Convert V into $\langle a, b\rangle$

$$
\begin{aligned}
5 \cos 210^{\circ}=5 \cdot-\cos 30^{\circ} & =5 \cdot \frac{-\sqrt{3}}{2}=\frac{-5 \sqrt{3}}{2} \\
5 \sin 210^{\circ}=5 \cdot-\sin 30^{\circ} & =5 \cdot \frac{-1}{2}=-\frac{5}{2} \\
& \left\langle\frac{-5 \sqrt{3}}{2}, \frac{-5}{2}\right\rangle
\end{aligned}
$$

Operations with vectors:

$$
\begin{aligned}
& \langle a, b\rangle+\langle c, d\rangle=\langle a+c, b+d\rangle \\
& \langle a, b\rangle-\langle c, d\rangle=\langle a-c, b-d\rangle \\
& k\langle a, b\rangle=\langle k a, k b\rangle \\
& \langle 3,5\rangle+\langle 2,-1\rangle=\langle 5,4\rangle \\
& \langle-1,4\rangle-\langle 4,2\rangle=\langle-5,2\rangle \\
& \langle 3,6\rangle-\langle-5,6\rangle=\langle 8,0\rangle \\
& 5\langle-2,1\rangle=\langle-10,5\rangle \\
& -3\langle-2,5\rangle=\langle 6,-15\rangle
\end{aligned}
$$

Dot Product

$$
\begin{aligned}
& \langle a, b\rangle \cdot\langle c, d\rangle=a c+b d \\
& \langle 4,3\rangle \cdot\langle 2,1\rangle=4 \cdot 2+3 \cdot 1=11 \\
& \langle-5,4\rangle \cdot\langle 4,5\rangle=-5 \cdot 4+4 \cdot 5=0
\end{aligned}
$$

How to find the angle between two vectors:

$$
u=\langle 6,2\rangle \quad, \quad v=\langle 3,5\rangle
$$

1) Draw u \& v in standard Position.

$$
\begin{aligned}
& u \cdot v=6 \cdot 3+2 \cdot 5=28 \\
& |u|=\sqrt{6^{2}+2^{2}}=\sqrt{40} \\
& |v|=\sqrt{3^{2}+5^{2}}=\sqrt{34} \\
& \cos \theta=\frac{u \cdot v}{|u||v|}=\frac{28}{\sqrt{40} \sqrt{34}}
\end{aligned}
$$

$$
\cos \theta=.759
$$

$$
\theta=\cos ^{-1}(.759) \approx 41^{\circ}
$$

Jan 29-10:37 AM

$$
u=\langle 3,4\rangle \quad, v=\langle-4,3\rangle
$$

1) Draw $u \in v$ in standard position.

2) find

$$
\begin{aligned}
& u \cdot v=0 \\
& |u|=5 \\
& |v|=5
\end{aligned}
$$

3) $\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{0}{5 \cdot 5}=\frac{0}{25}=0$

$$
\theta=\cos ^{-1}(0)=90^{\circ}
$$

$$
u=\langle 12,5\rangle \quad v=\langle-12,-5\rangle
$$

1) Draw $u \dot{\varepsilon} v$ in standard position.

2) Find $|u|,|v|$, and $u \cdot v=-169$

$$
|u|=\sqrt{12^{2}+5^{2}}=13, \mid v=\sqrt{(-12)^{2}+(-5)^{2}}=13
$$

3) find the angle between them.

$$
\begin{gathered}
\cos \theta=\frac{u \cdot v}{|u||v|}=\frac{-169}{13 \cdot 13}=-1 \quad \theta=\cos ^{-1}(-1) \\
\theta=180^{\circ}
\end{gathered}
$$

unit Vector \rightarrow Magnitude $=1$
verify that $u=\left\langle\frac{-5}{13}, \frac{12}{13}\right\rangle$ is a unit,

$$
\begin{equation*}
=\sqrt{\frac{25}{169}+\frac{144}{169}}=\sqrt{\frac{169}{169}}=\sqrt{1}= \tag{1}
\end{equation*}
$$

Special unit vector:

$$
\begin{aligned}
& i=\langle 1,0\rangle, \quad \dot{j}=\langle 0,1\rangle \\
&\langle 3,-2\rangle=\langle 3,0\rangle+\langle 0,-2\rangle \\
&=3\langle 1,0\rangle-2\langle 0,1\rangle \\
&=3 i-2 j
\end{aligned}
$$

$$
\begin{aligned}
& u=4 i+3 j \\
& =4\langle 1,0\rangle+3\langle 0,1\rangle\{=\langle a, b\rangle \\
& =\langle 4,0\rangle+\langle 0,3\rangle \\
& =\langle 4,3\rangle \\
& u=5 i-2 j \quad u+v=7 i+2 j \\
& v=2 i+4 j \quad-2 u=-2(5 i-2 j) \\
& =-10 i+4 j \\
& |v|=\sqrt{2^{2}+4^{2}}=\sqrt{20} \\
& u \cdot v=\langle 5,-2\rangle \cdot\langle 2,4\rangle=5 \cdot 2+-2 \cdot 4=2
\end{aligned}
$$

Jan 29-11:27 AM

Given $\quad u=4 i, v=2 i+2 j$

1) Draw u غ. V in standard position

$$
\begin{aligned}
& 4 i=\langle 4,0\rangle \\
& 2 i+2 j=\langle 2,2\rangle
\end{aligned}
$$

2) Find $|u|,|v|$, and $u \cdot v$

$$
|u|=\sqrt{4^{2}+0^{2}}=4, \quad|v|=\sqrt{2^{2}+2^{2}}=\sqrt{8} \quad u \cdot v=4 \cdot 2+0.2
$$

3) find the angle between u v.

$$
\begin{aligned}
\cos \theta=\frac{u \cdot v}{|u||v|} \Rightarrow \cos \theta & =\frac{2 \%}{4 \cdot \sqrt{8}} \\
& =\frac{\not x}{\sqrt{4} \sqrt{2}}=\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2} \\
\operatorname{Cos} \theta & =\frac{\sqrt{2}}{2} \rightarrow \theta=45^{\circ}
\end{aligned}
$$

Solve $\tan x-\sqrt{3}=0$ on $[0,2 \pi)$.

QI
Angle $=R A+n \cdot$ Period

QUIT
Angle $=\pi+R \cdot A .+n \cdot P$ period
QI $\quad x=\frac{\pi}{3}+n \cdot \pi$

$$
\begin{aligned}
& \text { R.A. } 60^{\circ}, \\
& \rightarrow \pi / 3, \frac{\pi}{3}
\end{aligned}
$$

QI

$$
n=0 \rightarrow \pi / 3, \frac{4 \pi}{3}
$$

$$
=\frac{4 \pi}{3}+n \pi
$$

$$
n=1 \rightarrow \frac{1}{3}(\text { Passed } 2 \pi) \quad\left\{\frac{\pi}{3}, \frac{4 \pi}{3}\right\}
$$

Jan 29-11:40 AM

Solve $\tan ^{2} 2 x-1=0$ on $\left[0^{\circ}, 360^{\circ}\right)$

$$
\tan ^{2} 2 x=1 \quad Q I \quad \text { Angle }=R A+n \cdot 180^{\circ}
$$

$\tan 2 x= \pm 1$ QI I Angle $=180^{\circ}-R A+n \cdot 180^{\circ}$

QII Angle $=180^{\circ}+R A+n .180^{\circ}$
QIV Angle $=360^{\circ}-R A+n .180^{\circ}$

$$
\begin{aligned}
2 x & =45^{\circ}+n \cdot 180^{\circ} \rightarrow x=22.5^{\circ}+n \cdot 90^{\circ} \\
2 x & =180^{\circ}-45^{\circ}+n \cdot 180^{\circ} \rightarrow x=67.5^{\circ}+n \cdot 90^{\circ} \\
2 x & =180^{\circ}+45^{\circ}+n \cdot 180^{\circ} \rightarrow x=112.5^{\circ}+n \cdot 90^{\circ} \\
2 x & =360^{\circ}-45^{\circ}+n \cdot 180^{\circ} \rightarrow x=157.5^{\circ}+n .90^{\circ} \\
n & =0 \rightarrow 22.5^{\circ}, 67.5^{\circ}, 1125^{\circ}, 157.5^{\circ} \\
n & =1 \rightarrow 1125^{\circ}, 1575^{\circ}, 202.5^{\circ}, 247.5^{\circ} \\
n & =2 \rightarrow 202.5^{\circ}, 247.5^{\circ}, 292.5^{\circ}, 337.5^{\circ}
\end{aligned}
$$

Graph $y=\frac{4}{\pi} \sin ^{-1}(x-3)$

$\frac{4}{\pi} \cdot-\frac{\pi}{2}=-2$

$$
\frac{4}{\pi} \cdot \frac{\pi}{2}=2
$$

Jan 29-11:56 AM

Geraph $\quad y=4 \operatorname{Cos}^{-1}\left(\frac{1}{4} x\right)+\pi$

Graph $y=-2 \tan ^{-1}(x+2)$

$$
\begin{aligned}
& \text { Simplify } \quad \sin (\underbrace{\sin ^{-1} \frac{1}{2}}+\cos ^{-1} \frac{1}{2})=\sin \left(30^{\circ}+60^{\circ}\right) \\
& \alpha=\sin ^{-1} \frac{1}{2} \quad \beta=\cos ^{-1} \frac{1}{2}=\sin 90^{\circ} \\
& \left.\sin \alpha=\frac{1}{2} \quad \begin{array}{c}
\cos \beta=\frac{1}{2} \\
\alpha=30^{\circ} \\
\beta=60^{\circ}
\end{array}=1\right] \\
& \operatorname{simplify} \quad \sin \left(2 \tan ^{-1} 1\right)=1 \\
& \begin{array}{l}
\alpha=\tan ^{-1} 1 \\
\tan \alpha=1 \\
\alpha=45^{\circ}
\end{array} \quad \sin \left(2 \cdot 45^{\circ}\right)=\sin 90^{\circ}
\end{aligned}
$$

